Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

نویسندگان

  • Flurin Cathomas
  • Hannes Sigrist
  • Luca Schmid
  • Erich Seifritz
  • Martin Gassmann
  • Bernhard Bettler
  • Christopher R Pryce
چکیده

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABAB receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABAB receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12-/-) exhibit increased auditory fear learning and that Kctd12+/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABAB receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16-/- and Kctd16+/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16-/- and Kctd16+/- mice. When fear memory was tested on the following day, Kctd16-/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16+/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16+/- mice. Relative to WT, both Kctd16+/- and Kctd16-/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABAB receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological characterization of GABAB receptor subtypes assembled with auxiliary KCTD subunits

GABAB receptors (GABABRs) are considered promising drug targets for the treatment of mental health disorders. GABABRs are obligate heteromers of principal GABAB1 and GABAB2 subunits. GABABRs can additionally associate with auxiliary KCTD8, 12, 12b and 16 subunits, which also bind the G-protein and differentially regulate G-protein signaling. It is unknown whether the KCTDs allosterically influe...

متن کامل

GABAB(1) receptor subunit isoforms differentially regulate stress resilience.

Stressful life events increase the susceptibility to developing psychiatric disorders such as depression; however, many individuals are resilient to such negative effects of stress. Determining the neurobiology underlying this resilience is instrumental to the development of novel and more effective treatments for stress-related psychiatric disorders. GABAB receptors are emerging therapeutic ta...

متن کامل

The role of GABAB receptors in imipramine-induced antinociception in experimental model of neuropathic pain

This study was designed to investigate the role of GABAB receptor agents on imipramine-induced antinociception in ligated and non-ligated mice using hot-plate test. The data showed that different doses of morphine (3, 6, and 9 mg/kg) induced a dose-dependent antinociception in ligated and non-ligated mice. However, the opioid response was decreased in ligated animals. Intracerebroventricular (i...

متن کامل

Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice.

GABAB receptors mediate slow synaptic inhibition in the nervous system. In transfected cells, functional GABAB receptors are usually only observed after coexpression of GABAB(1) and GABAB(2) subunits, which established the concept of heteromerization for G-protein-coupled receptors. In the heteromeric receptor, GABAB(1) is responsible for binding of GABA, whereas GABAB(2) is necessary for surfa...

متن کامل

Auxiliary GABAB Receptor Subunits Uncouple G Protein βγ Subunits from Effector Channels to Induce Desensitization

Activation of K(+) channels by the G protein βγ subunits is an important signaling mechanism of G-protein-coupled receptors. Typically, receptor-activated K(+) currents desensitize in the sustained presence of agonists to avoid excessive effects on cellular activity. The auxiliary GABAB receptor subunit KCTD12 induces fast and pronounced desensitization of the K(+) current response. Using prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Behavioural brain research

دوره 317  شماره 

صفحات  -

تاریخ انتشار 2017